I was born in the city of Abeokuta, Ogun State in Nigeria. I had my Nursery and Primary School Educations at the Children House School, Ibara, Abeokuta, Ogun State, Nigeria, from 1983 to 1989. My Junior and Secoundary School education were at the Baptist Boys' High School, Oke-Saje, Abeokuta, Ogun State, Nigeria, between 1990 and 1996. I got a B.Sc. degree in Mathematical Science (with bias in Mathematics) in 2002, M.Sc. degree in Mathematics in 2005 and Ph.D. degree in Mathematics in 2009 at the University of Agriculture, Abeokuta, Nigeria (now Federal University of Agriculture, Abeokuta, Nigeria). My M.Sc. and Ph.D. theses were based on the notions of "Central Loops" and "Osborn Loops" in the field of Algebra known as "Theory of Quasigroups and Loops". I have been doing research in the field of "Theory of Quasigroups and Loops" for the past 6 years and has not less than 30 research articles published in international and reputable journals. After my graduate studies at the University of Agriculture, Abeokuta, I got an appointment at the Department of Mathematics, Faculty of Science, Obafemi Awolowo University (OAU), Ile-Ife, Nigeria as an Assistant Lecturer and I have since risen to the postition of a Lecturer I. Since my assumption of duty at OAU, I have been teaching Algebra courses at undegraduate and post graduate levels, I have supervised an M.Sc. Mathematics thesis and I am presently supervising a Ph.D. Mathematics thesis. I have served as a member of some academic and administrative commitees both in the Department, Faculty and the University. I have attended national and International Conferences and Schools. I am married to Mrs. Oluwaseun Jaiyeola.

Close
Qualification
Rank
Research Area
Biography
Room Number
Gender
Country/Region
Theses
Journal Articles
Books
Edited and Refereed Conference Proceedings
Manuscripts Submitted for Publication
Manuscript

Profile Details

B.Sc., M.Sc., Ph.D. (Mathematics)

Senior Lecturer

NON-ASSOCIATIVE ALGEBRAIC SYSTEMS(QUASIGROUPS AND LOOPS) AND THEIR APPLICATIONS TO CRYPTOGRAPHY AND CODING THEORY

Mathematics Building C 209

Male

Nigeria

Publications

(a) Equivalence Relations in Algebraic Structures-B.Sc. 2002.
(b) An Isotopic Study of Properties of Central Loops – M.Sc. 2005.
(c) The Study of the Universality of Osborn Loops- Ph.D. 2009.

[1] T. G. Jaiyeola (2006) ; An holomorphic study of the Smarandache concept in loops, Scientia Magna Journal, Vol.2, No.1, pp. 1-8. MR2255667, Zbl 1157.20337. China/USA.
[2] T. G. Jaiyeola (2006) ; Parastrophic invariance of Smarandache Quasigroups, Scientia Magna Journal, Vol. 2, No. 3, pp. 48-53. MR2321213, Zbl 1157.20338. China/USA
[3] T. G. Jaiyeola & J.O. Adeniran (2006), On the Derivatives of Central loops,
Advances in Theoretical and Applied Mathematics, Vol. 1, No. 3, pp. 233-244. MR2330756 (2008c:20121), Zbl 1128.20054. India.
[4] T. G. Jaiyeola (2006) ; Palindromic permutations and generalized Smarandache palindromic permutations, Scientia Magna Journal, Vol. 2, No. 3., pp. 65-77. MR2321215. China/USA.
[5] T. G. Jaiyeola (2006 ) ; On the universality of some Smarandache loops of Bol- Moufang type, Scientia Magna Journal , Vol. 2, No. 4, pp. 45-58. MR2298502. China/USA.
[6] J.O. Adeniran & T. G. Jaiyeola (2007) ; On central loops and the central square
property, Quasigroups And Related Systems, Vol. 15, No. 2, pp. 191-200. MR2383946 (2008k:20148) , Zbl 1139.20061. Moldova/Poland.
[7] T. G. Jaiyeola (2008) ; A Pair of Smarandachely Isotopic Quasigroups And Loops of
The same variety, International Journal of Mathematical Combinatorics, Vol. 1, 36-44. MR2404000, Zbl 1144.08300. China/USA.
[8] T.G. Jaiyeola (2008); An holomorphic study of Smarandache automorphic and cross inverse property loops, Proceedings of the 4th International Conference on Number Theory and Smarandache Problems, Scientia Magna Journal. Vol. 4, No. 1, 102-108. MR2440545 (2009i:20132). China/USA.
[9] T.G. Jaiyeola (2008); On Smarandache Bryant Schneider group of A Smarandache loop, International Journal of Mathematical Combinatorics, Vol. 2, 51-63. MR2435816 (2009i:20131), Zbl 1152.20057. China/USA.
[10] T. G. Jaiyeola (2008) ; On the factor set of code loops, NUMTA Bulletin, Vol. 2, 1-14. India.
[11] T. G. Jaiyeola & J.O. Adeniran (2008) ; Algebraic properties of some varieties of central loops, Quasigroups And Related Systems, Vol. 16, No. 1, 37-54. MR2435526 (2009g:20147), Zbl 1154.20059. Moldova/Poland.
[12] T.G. Jaiyeola & J.O. Adeniran (2008); On some Autotopisms of Non-Steiner central loops, Journal of Nigerian Mathematical Society, Vol. 27, 53-68. MR2421795(2009d:20152), Zbl 1162.20045. Nigeria.
[13] T. G. Jaiyeola (2008); Smarandache Isotopy Theory of Smarandache: Quasigroups
and Loops, Proceedings of the 4th International Conference on Number Theory and Smarandache Problems, Scientia Magna Journal. Vol. 4, No. 1, 168-177. MR2440557. China/USA.
[14] T.G. Jaiyeola (2008); A Double Cryptography Using The Smarandache Keedwell Cross Inverse Quasigroup, International Journal of Mathematical Combinatorics, Vol. 3, 28-33. MR2464630. China/USA.
[15] T. G. Jaiyeola (2008) ; Some necessary and sufficient conditions for parastrophic invariance in the associative law, Fasciculi Mathematici , Vol. 40, 25-35. MR2499255 (2010a:20138), Zbl 1162.20046. Poland.
[16] T.G. Jaiyeola(2008); Some Isotopy-Isomorphy Conditions For m-Inverse Quasigroups And Loops, Analele Stiintifice ale Universitatii Ovidius Constanta, Seria Matematica, Vol. 16, No. 2, 57-66. MR2473800. Zbl 1199.20127. Romania.
[17] T.G. Jaiyeola & J.O. Adeniran (2009); On isotopic characterization of central loops, Creative Mathematics and Informatics, Vol. 18, No. 1, 39-45. MR2530645 (2010h:20160), Zbl pre05824229. Romania.
[18] T.G. Jaiyeola (2009); On a pair of universal weak inverse property loops, NUMTA Bulletin, Vol. 3, 22-40. India.
[19] T.G. Jaiyeola & J.O. Adeniran(2009); New Identities in Universal Osborn Loops, Quasigroups And Related Systems, Vol. 17, No. 1, 55-76. MR2536708(2010g:20118), Zbl 1193.20074. Moldova/Poland.
[20] T. G. Jaiyeola & J.O. Adeniran (2009); Weak Inverse Property Loops and Some Isotopy-Isomorphy Properties, Acta Universitatis Apulensis Mathematics-Informatics, Vol. 18, pp. 19-33. MR2554313 (2010j:20100), Zbl 1199.20128. Romania.
[21] T. G. Jaiyeola & J.O. Adeniran (2009); On the existence of A-loops with some commutative inner mappings and others of order 2, South East Asian Bulletin of Mathematics, Vol. 33, No. 5, 853-864. MR2551640(2010j:20101), Zbl 1203.20067. China.
[22] T.G. Jaiyeola (2009); Basic Properties of Second Smarandache Bol Loops, International Journal of Mathematical Combinatorics, Vol. 2, 11-20. MR2555374, Zbl 1197.20057. China/USA.
[23] T. G. Jaiyeola (2009); On the Universality of central loops, Acta Universitatis Apulensis Mathematics-Informatics, Vol. 19, 113-124. MR2629796 (2011e:20101), Zbl 1190.20050. Romania.
[24] T. G. Jaiyeola & J.O. Adeniran (2009); Not every Osborn loop is universal, Acta Mathematica Academiae Paedagogiace Nyíregyháziensis, Vol. 25, No. 2, 189-190. MR2570940(2011a:20165), Zbl 1208.20065. Hungary.
[25] T. G. Jaiyeola & J.O. Adeniran (2010); On Another Two Cryptographic Identities In Universal Osborn Loops, Surveys in Mathematics and its Applications, Vol. 5, 17-34. MR2607208 (2011h:20137), Zbl 1214.20063. Romania.
[26] T. G. Jaiyeola (2010); Relationship between code loops and some other loops, NUMTA Bulletin, Vol. 4, 45-52. Zbl 1236.20064. India.
[27] T. G. Jaiyeola (2010) ; On Middle Universal Weak and Cross Inverse Property Loops With Equal Length of Inverse Cycles, Revista Colombiana de Matemáticas, Vol. 44, No. 2, 79-89. . MR2784413 (2012h:20154), Zbl 1232.08001, Colombia.
[28] T.G. Jaiyeola, J.O. Adeniran & A. R. T. Solarin (2011); The universality of Osborn loops, Acta Universitatis Apulensis Mathematics-Informatics, Vol. 26, 301-320. MR2850621 (2012h:20155), Zbl 06150124. Romania.
[29] T. G. Jaiyeola (2011); On Three Cryptographic Identities in Left Universal Osborn Loops, Journal of Discrete Mathematical Sciences and Cryptography, Vol. 14, No. 1, 33-50.
(Publisher: Taylor and Francis-DOI:10.1080/09720529.2011.10698322)
MR2817167(2012h:20156). Zbl1216.20061. United Kingdom.
[30] J. O. Adeniran, J. T. Akinmoyewa, A. R. T. Solarin and T. G. Jaiyeola (2011); On Some Algebraic Properties of Generalized Groups, Acta Mathematica Academiae Paedagogiace Nyíregyháziensis, Vol. 27, No. 1, 23-30. MR2813588 (2012h:20138), Zbl 1240.20067. Hungary.
[31] T. G. Jaiyeola (2011); Smarandache Isotopy Of Second Smarandache Bol Loops, Scientia Magna Journal, Vol. 7, No. 1., 82-93. Zbl 1216.20060. China/USA.
[32] E. Ilojide, T. G. Jaiyeola & O. O. Owojori (2011); Varieties of groupoids and quasigroups generated by linear-bivariate polynomials over ring Z_n, International Journal of Mathematical Combinatorics, Vol. 2, 79-97. Zbl 1230.20062. China/USA.
[33] T. G. Jaiyeola (2011); On Middle Universal m-Inverse Quasigroups And Their Applications To Cryptography, Analele Universitatii De Vest Din Timisoara, Seria Matematica-Informatica, Vol. 49, No. 1, 69-87. MR2944889, Zbl 06150073. Romania.
[34] T. G. Jaiyeola & J.O. Adeniran (2011); Loops That Are Isomorphic To Their Osborn Loop Isotopes(G-Osborn loops), Octogon Mathematical Magazine, Vol. 19, No. 2, 328-348. Romania.
[35] T. G. Jaiyéola, J. O. Adéníran and A. R. T. Sòlárìn (2011), Some necessary conditions for the existence of a finite Osborn loop with trivial nucleus, Algebras, Groups and Geometries, Vol. 28, No. 4, 363--379. MR3026067, Zbl 06158028. USA.
[36] Ilojide E., T. G. Jaiyeola & S. A. Akinleye (2012); On the right, left and middle linear-bivariate polynomials of a linear-bivariate polynomial that generates a quasigroup over the ring Z_n, Journal of Nigerian Mathematical Society, Vol. 31, 107-118. MR3025561. Nigeria.
[37] T. G. Jaiyeola (2012); Osborn loops and their universality, Analele Ştiinţifice Ale Universităţii "Alexandru Ioan Cuza" Din Iaşi, Matematică, Vol. 58, No. 2, 437-452. (Publisher: De Gruyter -DOI: 10.2478/v10157-012-0018-7). MR3059972, Zbl 06182130. Germany.
[38] T.G. Jaiyeola & J.O. Adeniran (2012); A new characterization of Osborn-Buchsteiner loops, Quasigroups And Related Systems, Vol. 20, No. 2, 233-238. Zbl 06158107. Moldova/Poland.
[39] T. G. Jaiyeola & E. Ilojide (2012); On a group of linear-bivariate polynomials that generate quasigroups over the ring Z_n, Analele Universitatii De Vest Din Timisoara, Seria Matematica-Informatica, Vol. 50 (L) , No.2, 45-53. (Publisher: De Gruyter-DOI: 10.2478/v10324-012-0014-3). MR3034919, Zbl 06203986. Germany.
[40] T.G. Jaiyeola (2012), On the Application of Keedwell Cross Inverse Quasigroup to Cryptography, Yearbook of the Faculty of Computer Science, Goce Delcev University, Vol. 1, No. 1, 264-277. Macedonia.
[41] T. G. Jaiyeola, E. Ilojide & B. A. Popoola (2013); On the isotopy structure of elements of the group P_P (Z_n), Journal of Nigerian Mathematical Society, Vol. 32, 317-329. MR3112186. Nigeria.
[42] T.G. Jaiyeola, J.O. Adeniran & A.A.A. Agboola (2013); On the Second Bryant Schneider Group of Universal Osborn loops, Societatea Română de Matematică Aplicată si Industrială Journal (ROMAI J.), Vol. 9, Nr.1, 37-50. MR3120445. Romania.
[43] T. G. Jaiyeola (2013); On Two Cryptographic Identities in Universal Osborn Loops, Journal of Discrete Mathematical Sciences & Cryptography, Vol. 16, No. 2-3, 95–116. (Publisher: Taylor and Francis-DOI-10.1080/09720529.2013.821371), United Kingdom.
[44] T.G. Jaiyeola (2013); New identities in universal Osborn loops II, Algebras, Groups and Geometries, Vol. 30, No. 1, 111-126. MR3134622. USA.
[45] E. Ilojide & T. G. Jaiyeola (2014); Some normal congruences in quasigroups determined by linear-bivariate polynomials over the ring Z_n, Acta Universitatis Apulensis Mathematics Informatics, Vol. 37, 14-30. Romania.
[46] T. G. Jaiyeola, A. R. T. Solarin and J. O. Adeniran (2014), Some Bol-Moufang characterizations of the Thomas Precession of a gyrogroup. Algebras, Groups and Geometries, Vol. 31, No. 3, 341-362. USA.
[47] J. O. Adeniran, T. G . Jaiyeola & K. A. Idowu (2014), Holomorph of generalized Bol loops, Novi Sad Journal of Mathematics, Vol 44, No. 1, 37-51. Serbia. MR3288359
[48] T. G. Jaiyeola (2014); On some simplicial complexes of universal Osborn loops, Analele Universitatii De Vest Din Timisoara, Seria Matematica-Informatica, Vol. 52, No.1, 65– 79. (Publisher: De Gruyter-DOI: 10.2478/awutm-2014-0005). Germany. MR3295968
[49] T. G. Jaiyeola & B. A. Popoola (2015); Holomorph of generalized Bol loops II, Discussiones Mathematicae-General Algebra and Applications, Vol. 35, No. 1, 59–78. (doi:10.7151/dmgaa.1234).
Poland. MR3371164
[50] A. Isere, J. O. Adeniran, T.G. Jaiyeola (2015), Generalized Osborn loops of order 4n, Acta Universitatis Apulensis Mathematics Informatics, Vol. 43, 19-31. (doi: 10.17114/j.aua.2015.43.02). Romania. MR3403870
[51] T. G. Jaiyeola (2015), Generalized right central loops, Afrika Matematika, Vol. 26, No. 7-8, 1427-1442. (Publisher: Springer DOI: 10.1007/s13370-014-0297-0). Germany. MR3415163 Zbl 1335.20061
[52] A. Isere, J. O. Adeniran, T.G. Jaiyeola (2015), Holomorphy of Osborn loops, Analele Universitatii De Vest Din Timisoara, Seria Matematica-Informatica, Vol. 53, No.2, 81– 98. (Publisher: De Gruyter-DOI: 10.1515/awutm -2015-0016). Germany. MR3489607
[53] T. G. Jaiyeola, S. P. David, Y.T. Oyebo (2015), New algebraic properties of middle Bol loops, Societatea Română de Matematică Aplicată si Industrială Journal (ROMAI J.), Vol. .11, No. 2, 161–183. Romania.
[54] T. G. Jaiyeola, A.A. Adeniregun & M. A. Asiru (2017), Finite FRUTE loops, Journal of Algebra and Its Applications, Vol. 16, No. 2, 1750040, 10pp. (Publisher: World Scientific Publishers- DOI: http://dx.doi.org/10.1142/S0219498817500402). MR3608427, Zbl 1359.20037
[55] A. J. Saka, B. L. Adeleke and T. G. Jaiyeola (2017), Zig-zag-Matrix for Resolvable Nested Balanced Incomplete Block Designs, International Journal of Algebra and Statistics, Vol. 6, 1-2, 81–94. https://doi.org/10.20454/ijas.2017.1233. Egypt.
[56] S.O. Ogunrinade, S.O. Ajala, Y.T. Oyebo and T.G. Jaiyeola (2017), A Class of Distributive Quasigroup and Its Parastrophs, Journal of the Nigerian Association of Mathematical Physics (NAMP Journal), Vol. 39, 1-8. Nigeria.
[57] T. G. Jaiyeola, S. P. David, E. Ilojide and Y. T. Oyebo (2017), Holomorphic structure of middle Bol loops, Khayyam Journal of Mathematics, Khayyam Vol. 3, No. 2, 172–184. DOI: 10.22034/kjm.2017.51111. Iran.

T. G. Jaiyeola, A Study of New Concepts in Smarandache Quasigroups and Loops,
ProQuest Information & Learning, Ann Arbor, USA, 2009. ISBN: 978-1-59973-083-7;
1-59973-083-9; 9781599730837. MR2489953, Zbl 1159.20035.

[1] T. G. Jaiyeola & J.O. Adeniran, Isotopic Characterization of C-Loops, Proceedings of an International Conference in Honour of Professor E. O. Oshobi and Dr. J. O. Amao (Appreciating Mathematics in the Contemporary World), Obafemi Awolowo University, Ile-Ife, Nigeria, 15th December 2004. Published 2005, 33-35.
[2] T. G. Jaiyeola & J.O. Adeniran, Weak Inverse Property Loops and Some Isotopy-
Isomorphy Properties, Proceedings of an International Conference in Honour of Professor E. A. Akinrelere (Appreciating the future in Mathematics), Obafemi Awolowo University, Ile-Ife, Nigeria, 15th December 2005. Published 2006, 71-84.
[3] T. G. Jaiyeola (2010) ; Smarandache Isotopy Of Second Smarandache Bol Loops, Research on Number Theory and Smarandache Notions, Proceedings of the Sixth International Conference on Number Theory and Smarandache Notions, 8-19. Helix, Books on Demand ProQuest Information & Learning, Ann Arbor, USA. ISBN: 9781599731278. Zbl 1216.20060.
[4] J. O. Adeniran, J. T. Akinmoyewa, A. R. T. Solarin and T. G. Jaiyeola, On Some Algebraic Properties of Generalized Groups, Journal of the Nigerian Association of Mathematical Physics, ISBN 1116-43326, 16(2010), 401-406.

[1] J. O. Adeniran, T. G. Jaiyeola & K. A. Idowu, On some characterizations of generalized Bol loops.
[2] A. Isere, J. O. Adeniran, T.G. Jaiyeola, Classification of Osborn loops of order 4n.
[3] A. J. Saka, B. L. Adeleke and T. G. Jaiyeola, Coset Nested Balanced Incomplete Block Designs of Resolvable Type.
[4] T. G. Jaiyeola, Some Results on Neutrosophic Triplet Group.

[1] T. G. Jaiyeola and F. Smarandache, Inverse Properties in Neutrosophic Triplet Loop.
[2] T. G. Jaiyeola and G. Effiong, Basarab Loop and the Generators of its Total Multiplication Group
[3] T. G. Jaiyeola and G. Effiong, Basarab loop and its variance with inverse properties

Social Profiles

Account Details